生命科學系 何瓊紋助理教授-仿章魚皺褶吸盤結構陣列於可逆附著之研究

  • 刊登日期: 2024-01-22
申請系所(單位) 生命科學系
計畫主持人 何瓊紋 助理教授 ( 個人網頁 )
計畫名稱(中文) 仿章魚皺褶吸盤結構陣列於可逆附著之研究
計畫名稱(英文) Octopus-Inspired Wrinkled Sucker Arrays for Reversible Adhesions
共同主持人 楊宏達 教授 化學工程系
協同主持人
中文摘要 本研究旨在借鏡章魚吸盤結構,以發展新型附著材料,應用於民生消費品、軍用武器、科技產業和醫療產業等多個領域。傳統市售附著材料存在乾式物理附著和溼式化學黏著兩類機制,但乾式附著材料在多次使用後易結構崩壞,且附著強度下降,無法附著於潮濕表面。溼式黏著材料則有化學物殘留問題,限制應用範圍。為解決這些問題,研究團隊參考章魚吸盤結構,發展奈米尺寸吸盤結構陣列,能在乾燥或潮濕目標物表面吸附,並附著於微米尺度粗糙表面。然而,這些奈米吸盤在粗糙目標物上的附著表現隨表面粗糙度提升而下降。因此,計畫進一步研究各種章魚的吸盤結構,分析其附著能力與生存環境之關係,並仿效章魚吸盤之附著機制。計畫提出仿生吸盤結構,使用形狀記憶型高分子和矽油替代章魚的外套膜分泌物,製備具皺褶構型的吸盤結構陣列。這種材料能在微米尺度粗糙表面和不規則曲面附著,並在潮濕環境下保持附著。仿生吸盤結構尺寸、皺褶構型、排列規則與附著表現之關係將被研究,以優化附著力。研究團隊將使用Stöber二氧化矽膠體粒子和形狀記憶型高分子,利用旋轉塗佈技術製備仿生吸盤結構陣列,並進一步探討其在不同表面特性下的附著能力。最終目標是開發一種可在室溫下形變且具有重複使用特性的仿生吸盤結構附著材料,以應對多樣化應用需求。
英文摘要 This research aims to draw inspiration from octopus sucker structures to develop a novel adhesive material applicable in various fields, including daily necessities, military weaponry, technology, and healthcare. Conventional adhesive materials rely on either dry physical adhesion or wet chemical adhesion mechanisms. However, dry adhesives often suffer structural degradation and reduced adhesion strength after multiple uses, and they struggle to adhere to moist surfaces. On the other hand, wet adhesives pose limitations due to chemical residue. To address these challenges, the research team references octopus sucker structures and creates nano-sized sucker arrays. These structures can adhere to both dry and moist surfaces, including micro-rough surfaces. However, the adhesion performance of these nano-suckers decreases with increasing surface roughness. Consequently, the project delves further into studying various octopus sucker structures, analyzing their adhesion capabilities in different environments, and mimicking the adhesive mechanisms of octopus suckers. The proposed solution involves developing biomimetic sucker structures using shape-memory polymers and silicone oil instead of the octopus′s mantle secretion. These structures, with fold patterns, can adhere to micro-rough surfaces and irregular contours while maintaining adhesion in humid conditions. The relationship between the dimensions, fold patterns, arrangements, and adhesion performance of biomimetic suckers will be thoroughly investigated to optimize adhesion. The research team will utilize Stöber silica colloidal particles and shape-memory polymers, employing spin-coating techniques to create biomimetic sucker arrays. Furthermore, the adhesion capabilities of these structures will be explored under different surface conditions. The ultimate goal is to develop a biomimetic sucker adhesive material that can undergo shape transformation at room temperature and possess reusable characteristics, meeting diverse applications.