生物產業機電工程學系 朱玟霖助理教授-基於客觀體況評估與自動影像辨識的智慧乳牛管理系統開發

  • 刊登日期: 2024-01-11
申請系所(單位) 生物產業機電工程學系
計畫主持人 朱玟霖 助理教授 ( 個人網頁 )
計畫名稱(中文) 基於客觀體況評估與自動影像辨識的智慧乳牛管理系統開發
計畫名稱(英文) Development of an Intelligent Dairy Cow Management System Based on Objective Body Condition Assessment and Automated Image Recognition
共同主持人 1.動物科學系 江信毅副教授 2.電機工程學系 蔡曉萍副教授
協同主持人
中文摘要 在現代畜牧業中,乳牛的健康和體態狀況對牛乳生產及畜牧產業的影響至關重要。然而,在亞熱帶地區,高溫高濕度的環境為乳牛飼養管理帶來不同的挑戰。由於環境、空間、成本和技術等因素的限制,使得全面掌控變得困難,引起各種飼養管理問題。這些問題與乳牛的健康狀況和體態評分密切相關。傳統的乳牛體態評分主要依靠訓練有素的檢測員進行,但此方法因檢測人員的主觀判斷和經驗,造成評分的變異。由於主觀性的影響,評分的重複性較差。甚至同一檢測員在不同時間對同一頭乳牛進行評估時,評分也可能有所差異。人工評分需要花費大量的時間和勞力,尤其在大型牧場中,需評估大量乳牛,導致效率降低。因此,本計畫預計開發自動影像分析技術,探討體態測量上主觀與客觀性的檢測差異,以解決人工量測的問題。此外,透過制定的飼養管理方案,並利用機器學習技術預測牛隻體態的變化趨勢,來有效預防牛隻健康問題和生產效益。
英文摘要 In modern livestock farming, dairy cows′ health and physical condition are crucial for milk production and its impact on the dairy industry. However, in subtropical regions, the high temperature and humidity environment pose different challenges for dairy cattle feeding and management. Due to environmental, space, cost, and technology limitations, comprehensive control becomes difficult, leading to various feeding management issues. These problems are closely related to dairy cows′ health status and body condition scoring. Traditional dairy cow body condition scoring mainly relies on trained inspectors, but this method leads to variability in scoring due to the subjective judgment and experience of the inspectors. Due to subjectivity, the repeatability of scoring is poor. Even the same inspector may vary in their assessments of the same cow at different times. Manual scoring requires a great deal of time and labor, especially in large farms where a large number of dairy cows need to be evaluated, leading to reduced efficiency. Therefore, this project plans to develop automated image analysis technology to explore the differences in subjectivity and objectivity in body condition measurement to solve the problems of manual measurement. In addition, by formulating a feeding management plan and using machine learning technology to predict the trend of changes in cattle body condition, effective prevention of cattle health problems and production efficiency can be achieved.