生物化學研究所 唐 涵 助理教授-利用高分子材料置換細胞研究機械性傷害誘發植物幹細胞再生之機制

  • 刊登日期: 2024-01-11
申請系所(單位) 生物化學研究所
計畫主持人 唐 涵 助理教授
計畫名稱(中文) 利用高分子材料置換細胞研究機械性傷害誘發植物幹細胞再生之機制
計畫名稱(英文) Utilizing Smart Polymers to Replace Cell Content and Study the Mechanisms of Wound-Induced Plant Stem Cell Regeneration
共同主持人 1.生物科技研究所 呂冠儒助理教授 2.化學工程學系 黃智峯教授
協同主持人
中文摘要 傷口誘導的植物幹細胞再生對植物的一般生存以及實驗室生物技術應用至關重要。在受傷時,鄰近細胞感知到受傷害組織引起的生化和機械信號,這兩種信號經由訊息傳導被傳遞到細胞核,細胞啟動細胞命運轉換,進行幹細胞重新編程。儘管物理損傷對細胞重新編程至關重要,但傷口誘導細胞重新編程背後的機制尚不清楚。機械感應和傳導研究的障礙在於植物組織的複雜性。在這項研究中,我們使用模型系統苔蘚Phsycomitrium patens,其葉片由單層細胞組成,以克服這個問題。為了區分生化和機械刺激啟動的信號傳導途徑,我們將使用一台配備細胞微操作器的共軛焦顯微鏡,在單一細胞中實施抽吸和注射。僅使用抽吸時,我們將向鄰近細胞產生機械信號,而同時使用抽吸和注射將保持死亡細胞的形狀,因此鄰近細胞中的機械應力將被消除。高分子聚合物將被測試並應用作為注射材料。這項研究運用創新的技術和簡化的模型系統,探討細胞對傷害誘導的早期反應,特別著重於區分生化和機械信號。高分子聚合物的應用和精確單細胞操作技術有助於實現識別參與植物幹細胞再生早期階段的關鍵基因的目標。
英文摘要 Wound-induced plant regeneration is critical for general plant survival and laboratory-based biotechnology applications. Upon wounding, neighbor cells perceive biochemical and mechanical signals caused on the wounding site. These two types of signals are transduced into the nucleus where the cell activates cell fate transition to proceed with stem cell reprogramming. Although the physical damage is essential for cell reprogramming, the mechanisms behind wound-induced cell reprogramming are unclear. The obstacle that hinders the investigation of mechanosensing and transduction is the complexity of plant tissues. In this study, we use the model system moss, Phsycomitrium patens, leaf composed of a single-cell layer to overcome this problem. To distinguish the signaling pathways activated by biochemical and mechanical stimuli, we will use a confocal microscope equipped with cell manipulators to implement suction and injection in one single cell. With suction only, we will generate a mechanical signal to neighbor cells, while the balance of suction and injection simultaneously will maintain the shape of a dead cell therefore the mechanical stress will be eliminated in the neighbor cells. Smart polymers will be tested and applied as the injection material. In summary, this study employs innovative techniques and a simplified model system to investigate the cellular responses to wound-induced stress, with a focus on distinguishing between biochemical and mechanical signals. The use of smart polymers and precise manipulation techniques contributes to the goal of identifying key genes involved in the early stages of plant regeneration.