利用大數據整合以建立高致病禽流感病毒早期預警系統

  • 刊登日期: 2019-03-12
申請系所(單位) 微生物暨公共衛生學研究所
計畫主持人 趙黛瑜 教授 ( 個人網頁 )
計畫名稱(中文) 利用大數據整合以建立高致病禽流感病毒早期預警系統
計畫名稱(英文) Integrating big data to establish an early warning system for highly pathogenic avian influenza viruses
共同主持人 1. 吳宏達 副教授 / 統計學研究所 2. 劉宗榮 副教授 / 通訊工程研究所
協同主持人
中文摘要 自從2009年始,一種新型態的高病原性禽流感病毒,屬於H5亞型中 2.3.4.4的分支,在中國大陸被偵測出來後,就快速演化成許多不同的亞型,包括H5N2, H5N3, H5N6及H5N8。此病毒可經由候鳥散播到全世界,且造成全世界禽場重大的經濟損失,且由於此病毒已有報告會傳播給人,而致病,甚至死亡,因此對公共衛生造成極大的威脅。台灣地處在歐亞候鳥的遷徙路徑上,加上養禽場密度甚高,因此從2015年起也陸續在禽場中偵測到該病毒,之前本團隊的研究發現高禽場密度、高水陸禽養殖環境、高未登記水禽場密度及高農作物種植面積等環境因子,是造成禽場爆發群聚的重要危險因子。為了進一步了解候鳥的遷徙如何造成台灣及全球禽場爆發流行的趨勢,因此本研究計畫希望整合大數據,透過統計模型與深度機器學習的方法,進一步提供一預測模型,以助於台灣政府及全世界在面對高病原性禽流感病毒威脅的參考。
英文摘要 Since 2009, re-assortment events of high pathogenic avian influenza (HPAI) H5N1 with low pathogenic avian influenza (LPAI) viruses have been detected in China, resulting in the generation of at least 13 different subtypes, such as H5N2, H5N3, H5N6 H5N8. Epidemiological investigations on waterfowl migration showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. The clade 2.3.4.4 of HPAI H5 virus capable of rapid, global spread in domestic poultry populations poses a major threat to both global poultry production public health. Combining satellite imaging, our previous results showed that various ecological factors may have contributed to each HPAI subtype hotspots over three consecutive years, including high poultry farm density, poultry heterogeneity index, non-registered waterfowl f density higher percentage of cropping land coverage. To enhance our understanding how wild birds, including migrating birds, contributed to the poultry farm outbreaks the spreading of HPAI, we proposed a pioneer study to integrate big data, which varied by space time. We are interested in utilizing different statistical modeling machine learning to predict the potential of poultry farm HPAI outbreaks in Taiwan at the global level.