申請系所(單位) |
基因體暨生物資訊學研究所 |
計畫主持人 |
侯明宏 教授 ( 個人網頁 ) |
計畫名稱(中文) |
結合人工智慧和生物物理方法找尋非典型蛋白質間作用之新型抗癌標的 |
計畫名稱(英文) |
Combining artificial intelligence and biophysical methods to look for non-native protein-protein interactions on anti-cancer drug development. |
共同主持人 |
王丕中 教授 / 資訊科學與工程系 |
協同主持人 |
李龍緣 副教授 / 生命科學系 |
中文摘要 |
利用小分子影響蛋白的聚合,藉此調節蛋白的功能,為現今藥物開發之熱門策略。有別於常規上使用蛋白質複合體的交界面作為藥物的目標區,本實驗室利用新的策略,首次以非典型蛋白質交界面,也就是預測目標蛋白質聚和的交界面,作為開發穩定蛋白質特定聚合狀態藥物之標靶位點,並將其應用於藥物虛擬篩選之程序中,並考量各項分子間作用力於蛋白質聚合時之重要性,最終發展出一套新穎藥物開發策略。近期我們以此策略開發成功開發抗中東呼吸症候群(MERS)的前導藥物P3,目前正透過此平台開發對抗癌症之前導藥物。 本計畫中我們使用人工智慧系統來搜尋蛋白質晶體資料庫上的潛力目標,加速找尋抗癌相關潛力非典型蛋白交界面。此外,透過電腦虛擬藥物篩選找尋前導藥物,最後透過結構生物學以及癌症生物學相關實驗進行驗證,建立一套具潛力之人工智慧輔助藥物開發平台,為抗癌藥物開發與發展開啟新的一頁。 |
英文摘要 |
Modulating protein oligomerization thus influencing its function by small molecules is a promising strategy in drug development. Currently, all of these kinds of therapeutic molecules are designed based on the native protein-protein interaction (PPI) interface. For the first time, our lab proposed a novel strategy to target the non-native PPI interface of MERS CoV N protein, by using which we identified a lead compound P3 to exhibit antiviral activity. In current proposal, we attempt to fully establish the platform of drug development based on targeting the non-native PPI. To address the goal, we will develop an automatic method for non-native PPI identification by artificial intelligence approach and validate the acquired compounds by bio-assays. We will integrate the above advances with our experiences in drug design and structural biology to establish a novel platform for drug development. |